
N. Balachandrarao et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 4( Version 6), April 2014, pp.29-33 

 

 
www.ijera.com                                                                                                                                29 | P a g e  

 

 

 

High Security Masked AES Based On Retina Image as a Key 
 

N. Balachandrarao, S. Parvathi Nair 
Dept. of Electronics and Communication Engineering SRM University Chennai, India 

Dept. of Electronics and Communication Engineering SRM University Chennai, India 

 

Abstract 
In order to protect “data-at-rest” in storage area networks from the risk of differential power analysis attacks 

without degrading performance, a high-throughput masked advanced encryption standard (AES) engine is 

proposed. However this engine adopts an unrolling technique which requires extremely large field 

programmable gate array (FPGA) resources. In this brief, we aim to optimize the area for masked AES with an 

unrolled architecture. We achieve this by mapping its operations from GF (2
8
) to GF (2

4
) as much as possible. 

We reduce the number of mapping for GF (2
8
) to GF (2

4
) and inverse mapping for GF (2

4
) to GF (2

8
) operations 

of the masked SubBytes step from ten to one. In order to be compatible, the masked Mixcolumns, masked 

AddRoundKey, and masked ShiftRows including the redundant masking values carried over GF (2
4
). BRAM in 

FPGA block can be used to reduce hardware resources and with this we can achieve 40.9-Gbits/s. 

KeyWords— Advanced Encryption Standard (AES),    Masking, field programmable gate array (FPGA), 

Throughput 

 

I. INTRODUCTION 
All  of  the  cryptographic  algorithms  we  

have  looked  at  so  far  have  some problem. The 

earlier ciphers can be broken with ease on modern 

computation systems. The DES algorithm was broken 

in 1998 using a system that cost about $250,000. It 

was also far too slow in software as it was developed 

for mid -1970‟s hardware and does not produce 

efficient software code. Triple DES on the other 

hand, has three times as many rounds as DES and is 

correspondingly slower. As well as this, the 64 bit 

block size of triple DES and DES is not very efficient 

and is questionable when it comes to security. with 

the help of NIST a brand new AES came into 

existence. 

In 1999, Kocher et al. first broke the normal 

advanced encryption standard (AES) [1] by means of 

power analysis attacks. Later, the differential power 

analysis (DPA) attack was further developed as one of 

the most promising power analysis attacks. From then 

on, numerous efforts have been devoted to the 

development of efficient countermeasures for the AES 

implementations against DPA attacks. Two 

representatives are the multiplicative masking and the 

Boolean masking. They both try to remove the 

correlation between the power consumption and the 

secret keys. The multiplicative masking can be 

realized by using either standard CMOS cells at the 

gate level (which has been proved to be insecure in 

terms of glitch attacks) or nonstandard CMOS cells 

(which has been proved to be DPA resistant and glitch 

free but requires a semiautomatic design flow). On the 

other hand, the Boolean masking can be easily 

realized at the algorithmic level and is immune to 

DPA and glitch attacks. The Boolean masking has the 

advantage of easy implementation because it does not 

need extra specific hardware as in [3] and [4]. 

The Boolean masking is a good candidate to 

be applied to the AES in SANs, but if we directly 

apply it to the AES, one masked AES‟s S-box over 

GF(2
8
)with two 8-bit input and output masks needs to 

store 28×28×256bytes(16.8Mbytes). Therefore, for a 

whole 128-bit masked AES with an unrolled 

architecture, it needs to store around 2952.8 Mbytes. 

This is too big to be fit into any field programmable 

gate array (FPGA). To have a feasible FPGA 

implementation, one possible way is to transform the 

S-box computation of a masked AES from GF (2
8
) to 

GF (2
4
). 

We perform the masked AES mainly over 

GF (2
4
), and the related operations like the masked 

MixColumns, masked AddRoundKey, and masked 

ShiftRows including redundant masking values are 

all calculated over GF (2
4
). Therefore, we only need 

to transform the input values from GF(2
8
) to 

GF(2
4
)and transform the output values back from 

GF(2
4
) to GF(2

8
) once which reduces around 20.5% 

hardware resources. In addition, we map half 

resources of the masked S-box onto block RAM 

(BRAM) which reduces 15.7%hardware resources. 

We insert pipelined registers into the round 

calculation and its masked S-box calculation in order 

to meet the requirement of high throughput for SANs. 

We show that the area-optimized design can be fit 

into Xilinx Virtex-6 plat form, which provides a 

feasible alternative protection of the AES on 

reconfigurable devices. We also perform DPA attack 

to the iterative version of the masked AES, and we 

RESEARCH ARTICLE                             OPEN ACCESS 



N. Balachandrarao et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 4( Version 6), April 2014, pp.29-33 

 

 
www.ijera.com                                                                                                                                30 | P a g e  

prove that no correct bytes of the last round key can 

be guessed from our masked design. 

The rest of this brief is organized as follows. 

Section II Presents the existing works. Section III 

proposes the optimized AES with an unrolled 

architecture, presents the detailed design 

methodologies about the masked S-box and masked 

MixColumns, and further optimizes the proposed 

design by inserting pipelined registers. 

       

II. PREVIOUS WORK 
Data transformations in a SAN system 

usually need real-time high-throughput processing 

regardless of area overheads. In addition, the security 

issues of  “data-at-rest” in a SAN system  require an 

add-in  masking to be DPA and glitch attack 

resistant. Most existing works only concern high 

throughputs but not the ability to defend DPA and 

glitch attacks.  Gaj and Chodowiec [5] proposed a 

pipelined structure for the AES on Virtex XCV-1000 

FPGA and achieved 12 Gbits/s.  Standaert et al. [6] 

presented the design tradeoff for the further 

optimization of the AES implementation on FPGA 

platforms. Unrolling, tiling, and pipelining structures 

for the AES were discussed in [7]. McLoone and 

McCanny‟s method achieved a throughput of 12 

Gbits/s using lookup table (LUT)-based SubBytes 

[8]. Another approach [9] aimed at the on-the-fly 

generation of SubBytes was first proposed by 

Rijmen, one of the creators of the AES. Hodjat and 

Verbauwhede presented a fully pipelined SubBytes 

architecture achieving a throughput of 21.54 Gbits/s . 

However, all the afore mentioned methods are 

vulnerable to DPA and glitch attacks. Mangardet al. 

successfully broke the AES by using the DPA attack 

at the algorithmic level. Oswald et al. proposed a 

masked SubBytes over GF (2
4
) at the algorithm level, 

but they only focused on software implementation. 

Higher order masking schemes have been proposed. 

They are based on software implementations of the 

masked AES. The countermeasures used in the work 

of Goli´ c  and Canright and Batina  can be attacked 

successfully by the glitch attack  at the gate level. To 

the best of our knowledge, no previous work has 

been done on the high-throughput masked AES that 

has the ability to defend against DPA and glitch 

attacks. This is due to the required huge hardware 

area when applying masking to AES at the algorithm 

level. 

 

III. Proposed masked AES of unrolled 

architecture 
In the Boolean masking implementation, the 

intermediate Value x is concealed by exclusive-

ORing it with the random Mask m. In the round 

function of the AES, ShiftRows, MixColumns, and 

AddRoundKey are linear transformations, while 

SubBytes is the only nonlinear transformation of the 

AES. However, the masked nonlinear transformation 

SubBytes has the characteristic as S-box(x ⊕ m) not 

equal to S-box(x) ⊕ S-box (m). In order to mask the 

nonlinear transformation, a new S-box, denoted as S-

box_, is recomputed as S-box‟(x ⊕ m) =S-box(x) ⊕ 

m‟, where m and m‟ are the input and output masks 

of SubBytes. To mask a 128-bit AES, it usually needs 

6-byte random values. These 6 values are  defined  as  

m,  m‟,  m1,  m2,  m3,  and  m4.  For  simplicity,  it  

is  defined  as  m1234= {m1,m2,m3,m4}  aand  the  

mask  for  one 32-bitMixColumns  transformation, 

and  it  also holds that m‟1234 = MixColumns 

(m1234). The field  GF( 2
8
) is an extension of the 

field GF( 2
4
), over which to perform a modular 

reduction needs an irreducible polynomial of degree 

2, x
2
 + {1}x + {e}, and another irreducible 

polynomial of degree 4,  x
4
 + x+1. In order to reduce 

the hardware resources, to calculate the masked AES 

engine mainly over GF (2
4
).  Fig.3.1 shows the 

proposed masked AES, which moves the mapping 

and inverse mapping outside the AES‟s round 

functions. The plaintext and the masking values are 

mapped once from GF ( 2
8
) to GF(2

4
 ), and all the 

intermediate operations are computed over GF(2
4
 ). 

Finally,  the  cipher  text  is  mapped  back  from  GF( 

2
4
)  to  the  original  field GF(2

8
 ). In this brief,all the 

masking values need to be mapped from  GF( 2
8
) to 

GF( 2
4
), and    denote    as  m84 = map(m),  m‟84 = 

map(m‟), m1234,84  =  map(m1234),  and m‟1234,84 

= map(m‟1234). The  adjustment of the masked 

SubBytes and masked MixColumns  is discussed in  

the  following,  and  the  masked  ShiftRows  and   

masked  AddRoundKey  remain  the same. 

 

A. Optimized Masked S-Box over GF (2
4
) 

In  order to  move  the  mapping  and inverse  

mapping outside  AES‟s  round operation, The  

exchange  of  computational  sequence  of  masked  

affine  and  inverse mapping  functions  within  

masked  S-box.  The  masked  affine  function  needs  

to  be adjusted  with  new  scaling  factors.  In Fig.  

1(b),  map  operation  is  the  mapping transformation  

of  8  ×  8  matrix,  and  map
-1

  is  constructed  by  the  

inverse  map operation. The input values of the map 

function are denoted as   (z +m) and m, and the 

output values of the map function are (z + m)‟ and 

m‟,  

Where {(z + m), m} ∈  GF (2
8
) and {(z + m) _, m_} 

∈  GF (2
4
).  

It holds that (z + m + m)‟= map (z + m + m)           

(1) 

Where (z + m) _ = {a*h + mh, a∗l + ml} and m‟ = 

{mh, ml}.  

As  discussed  before,  maffine  and  

maffine‟    are  needed   for  scaling  the  output  

values and the output masking values. The following 



N. Balachandrarao et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 4( Version 6), April 2014, pp.29-33 

 

 
www.ijera.com                                                                                                                                31 | P a g e  

steps introduce the procedure to obtain the scaling 

values. The normal affine function (Ax+b) can be 

applied to the left and the right sides of (1) as 

 A (z + m + m) + b = Amap−1(z + m + m)‟+ b. (2)   

When mapping Equation 2 from GF(2
8
) to  GF(2

4
), 

we can getmap (A(z  +m +  m)  +  b)=  map  

_Amap−1(z  +  m  +  m)‟+  b‟  (3)  map  (A(z  +  m)  

+  b)+map Am=  mapAmap−1(z + m)‟+ mapb + 

mapAmap−1m‟. (4) 

Therefore, we deduce that maffine = 

mapAmap−1 + mapb and Maffine‟= mapAmap−1. 

The Fig. 3.2 (b) shows the new  

 
Fig 3.1(a): Masked AES 

 

 

Fig 3. 1(b): Masked S-box 

 
Fig 2: Affine transform function from GF(2

8
) to 

GF(2
4
) 

 

B. PRPOSED MASKED MIXCOLUMNS OVER 

GF(2
4
) 

Masked MixColumns can be scaled to adjust 

the operations     over GF(2
4
), and it needs to deduce 

the scaling factor of a modular multiplication with 

the fixed coefficients 0X02 and 0X03. If S is 1 byte 

of MixColumns, it holds that S= map(Sh,Sl) ∼= 

Shx+Sl, where S ∈  GF(2
8
) and Sh,Sl ∈GF(2

4
). 

Therefore, scaling factors 2x+6 and 2x+7 of S equal 

to (4Sh+2Sl)x  + fSh+6Sl) and (5Sh+2Sl) x+ 

(fSh+7Sl). Fig. 3 shows the scaling computation for 

the masked Mixcolumns. 

 

C. Optimization for Proposed Architecture 

Usually, throughputs can be significantly 

improved by inserting pipeline registers for latency 

careless designs. For each masked AES‟s round, we 

insert six-stage pipelines to enhance the throughputs. 

 
Fig 3: Scaling computation of the masked 

MixColumns 

 

We insert three pipelines to each round of 

the masked AES, called outer three pipelines, as 

shown in Fig. 1(a). The pipeline registers are inserted 

at the output of each transformation. We insert three 

pipelines to the masked S-box, called inner three 

pipelines, as shown in Fig. 1(b). Note that the 

maximum pipelined stages for our proposed design is 



N. Balachandrarao et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 4( Version 6), April 2014, pp.29-33 

 

 
www.ijera.com                                                                                                                                32 | P a g e  

six. In order to be compatible with the encryption 

procedure, we also insert six-stage pipelines to the 

key expansion in order not to affect the critical path 

of the main encryption. 

 

IV. HIGH SECURITY PERFORMANCE 
To improve security in the AES instead of 

manually giving the key, we will extract the key from 

pixel values of the Retina image. So, we can prevent 

the hacking of key from various attacks. Thus, the 

high security AES can be introduced. Here, we use 

matlab for converting the Retina image portions into 

pixel (digital) vaues. The following block diagram fig 

:IV depicts the idea. 

 

                          Retina image as input 

 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

           

 

 

Fig iv:  block diagram for  key extraction from retina 

image 

 

V. RESULTS 
Here, we showed how masking is perfectly 

done by masking values both on Encryption and 

Decryption side. The following Fig:a and Fig:b show 

perfect masking by introducing both wrong and 

correct masked ouputs. 

 

 
Fig v(a):  Wrong Masked output 

 

Here, we simulated  entire AES encryption 

and decryption using the same masking values on 

both side. The plain text can be decrypted at output 

using same masking values and key. 

 
Fig v(b):  Correct Masked output 

 

Here, we use retina image for the key to 

improve high security for the Masked AES more 

better. We extracted around 10 keys from the test 

Retina as input image  

Conversion of retina image 

portion into digital values 

by using matlab 

Digital values are stored in 

defined text document 

The text document will be 

placed in project location 

work space of  modelsim 

Key is extracted from the 

text document 



N. Balachandrarao et al Int. Journal of Engineering Research and Applications           www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 4( Version 6), April 2014, pp.29-33 

 

 
www.ijera.com                                                                                                                                33 | P a g e  

document and we used key_extraction1 as key. The 

following Fig c: depicts the idea. 

 
Fig v(c): Masked AES ouput using Retina image for 

Key extraction 

 

VI. CONCLUSION 
High security is an important factor for 

encryption algorithms in cryptography. The proposed 

masked AES only needs to map the plaintext and 

masking values from GF (2
8
) to GF(2

4
) once at the 

beginning of the operation and map the cipher text 

back from GF(2
4
) to GF(2

8
) once at the end of the 

operation. Therefore, by moving the mapping and 

inverse mapping outside the masked AES‟s round 

function. In addition to this here, we use retina image 

as a key which results in further development in 

encryption standards. 

 

REFERENCES 
[1]  Advanced Encryption Standard (AES), 

FIPS-197, Nat.  Inst. of Standards and 

Technol., 2001. 

[2]  P. Kocher, J. Jaffe, and B. Jun, “Differential 

power analysis,” in Proc. CRYPTO, 1999, 

vol. LNCS 1666, pp. 388 397. 

[3]  L. Goubin and J. Patarin, “DES and 

differential power analysis (the „duplication‟ 

method),” in Proc. CHES LNCS, 1999, vol. 

1717, pp. 158–172. 

[4]  S. Messerges, “Securing the AES finalists 

against power analysis attacks,” in Proc. 

FSE LNCS, 2000, vol. 1978, pp. 150–164 

[5]  A.  Jaya Lakshmi, I.  Ramesh Babu, “Design 

of security key Generation algorithm using 

Fingerprint based Biometric Modality”, 

ISSN: 2250-3021, Vol 2, Feb 2012. 

[6]  P. Balakumar, R. Venkatesan, “A Survey on 

Biometric Based Cryptographic key 

Generation Scheme”, ISSN 2249 - 9555, 

Vol 2, No1, 2012. 

[7]  J. D. Goli´ c, “Techniques for random 

masking in hardware,” IEEE Trans. Circuits 

Syst. I, Reg. Papers, vol. 54, no. 2, pp. 291–

300, Feb. 2007 

[8]  V. Rijmen, “Efficient Implementation of the 

Rijndael S-Box,” Dept. ESAT., Katholieke 

Universiteit Leuven, Leuven, Belgium, 

2006. [Online]. Available: 

http://www.networkdls.com/Articles/sbox.p

df 

[9]  A. Hodjat and I. Verbauwhede, “A 21.54 

Gbits/s fully pipelined processor on FPGA,” 

inProc. IEEE 12th Annu. Symp. Field-

Programm. Custom Comput. Mach., 2004, 

pp. 308–309 


